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Static and dynamic scaling for ‘free-reptation’4imited 
chain-chain aggregation in two dimensions 

Jean-Marc Debierre and Loi’c Turban 
Laboratoire de Physique du Solidet, Universite de Nancy I,  BP 239, F-54506 Vandoeuvre- 
Its-Nancy, France 

Received 29 January 1987, in final form 26 March 1987 

Abstract. Chain-chain aggregation is studied by Monte Carlo simulations on the triangular 
lattice. N-conserving local deformations lead to snake-like motion or ‘free reptation’ of 
the aggregating chains. The scaling of the chain-size distribution function is carefully 
examined and estimates of the static and dynamic exponents are obtained. 

The dynamics of an isolated polymer chain in solution has been extensively studied 
using lattice models and Monte Carlo algorithms with local N-conserving deformations 
of the chain (Verdier and Stockmayer (1962), for a recent review see Caracciolo and 
Sokal (1986)). These rules lead to a snake-like motion of the chain which may be 
termed ‘free reptation’ since ‘reptation’ is reserved to describe the motion of a chain 
through a set of fixed obstacles (de Gennes 1971, Doi and Edwards 1978). These 
models simulate the dynamics of a chain in a good solvent in the ‘free draining’ limit 
where hydrodynamic interactions are ignored. 

In a recent work (Debierre and Turban 1987a) a chain-chain aggregation model 
has been studied, in which each chain was allowed to move as a whole at random, 
i.e. we considered the aggregation of rigid chains in Brownian motion. The purpose 
of this paper is to extend this work to the case where the dynamics of the aggregation 
of deformable chains is controlled by the free-reptation process. 

We have performed 50 Monte Carlo simulations on a L x L two-dimensional lattice 
( L  = 256) with periodic boundary conditions in the low density limit ( p  = 0.0153). We 
use the pure one-bead moves shown in figure 1, working on a triangular lattice (on 
the square lattice with the corresponding rules each bead remains indefinitely on the 
same sublattice and aggregation is hindered at long times). At each Monte Carlo step 
a bead is randomly selected and the time is incremented by Ar = l /No where No is 
the number of monomers at t = 0 ( N o  = 1000). A move is then chosen at random among 
the ones allowed by the local configuration of the chain. This move is executed when 
the final configuration satisfies the excluded volume condition with at most one 
monomer per site. When an end bead is moved, the first-neighbour sites of its new 
location are examined and when one of them is occupied by another chain end bead, 
the two chains stick. We do  not allow the formation of rings. In the case of rigid 
chains this restriction had no marked influence on the scaling properties. We intend 
to study this point later for reptating chains. The time evolution of a sample is illustrated 
in figure 2. 

t Unite associie au CNRS no 155.  
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Figure 1. A four-site chain (bold line) on the triangular lattice. Bead 2 is allowed to jump 
to site a and bead 3 to site e. End bead 4 may jump to sites a, b, c and d but not to site 
2 which is already occupied. For end bead 1, jumps to sites a, e and f a r e  allowed and 
jumps to sites 3 and 4 are not. 

We first re-examine the scaling of the cluster-size distribution function (Kolb 1984, 
Vicsek and Family 1984, Meakin et al 1985). Let N ( s ,  t )  be the number of s-site chains 
at time t ,  then the chain-size distribution function is defined as 

n(s ,  t )  = ~ ( s ,  t ) / L 2 .  

n(b”s, 6 ’ ~ )  = b y w ( s ,  t ) .  (2)  

n ( s ,  t )  = s - 8 f ( s / t ‘ )  ( 3 a )  

n ( s ,  t )  = t - ” g ( s / t ’ )  ( 3 b )  

( 1 )  

Assuming that it is a generalised homogeneous function of s and t ,  one may write 

Taking successively b = s-l’ys and b = f-l’yr, one obtains 

where the notations z = y J y ,  and e = -y, /y,  have been used (Meakin et al 1985). The 
scaling functions behave as 

f ( x )  - x s  g ( x )  - x p  x<< 1 (4a) 

A x ) < <  1 g(x)<< 1 x >> 1 (4b) 

so that n ( s ,  t )  - s-‘tCW when x<< 1 with 

= 8 -  6 = --E 

w = 2s = ( e + E )z.  

w = ( e - 7) z. 

This leads to the scaling law: 

The mth moment of the distribution function 
oc 

Mm(f )=  c s m n ( s ,  f )  
o = l  
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U Figure 2. Three stages of a simulation with 250 

particles in a 128 x 128 box at times: ( a )  r = 100, i b )  
I =  1000 and ( c )  f = 10000. The apparent NW-SE 
orientation of the chains is due to the deformation 
of the triangular lattice into a square lattice with 
diagonals in this direction. 

behaves as 
AI,,,( t )  - amtz(m+1-8 '  + b m f Z ( r - 8 '  (8) 

at large times. The first moment M , ( t )  gives the particle density which is time 
independent so that 

0 = 2  7 < 2  

0 = 7  7 > 2 .  
(9) 

When T > 2 ,  one gets S = 0 and w = 0, i.e. the distribution is static. This corresponds 
to the case of percolation clusters (Herrmann 1986). For the aggregation process 0 = 2 
and ~ < 2  (Vicsek and Family 1984), a result which is supported by all the available 
simulation results. 
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The number of chains at time t ,  N (  t) ,  is proportional to the moment of order zero 
of the chain-size distribution function so that, according to equations ( 6 )  and (8), 

N (  t )  - tCZ T < 1  ( l o a )  

N ( t ) -  r c w  T> 1 .  ( l o b )  

S (  t )  - tz .  ( 1 1 )  

(12) 

The mean chain size S ( t )  = M , ( t ) / M , ( t )  grows as 

From the plots of In N ( t )  and In S ( t )  as functions of In t (figure 3), we obtain 

z = 0.43 f 0.02. 

Let R ( t )  be the mean radius of gyration of the chains at time t ,  then the fractal 
dimension of the chains is such that 

S ( t ) - R ( t ) ?  

0 11 
In  t 

0 11 
I n  t 

Figure 3. ( a )  In N ( I )  and ( b )  In S ( t )  as a function of In I. The slope of the straight part 
is, respectively, - z  = -0.43 * 0.02 and z = 0.42 * 0.02. 
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Figure 4. In S(t)  as a function of In R ( f ) .  The straight line has a slope D = 1.30i0.04.  

From the log-log plot of S ( t )  against R ( t )  (figure 4) we deduce 

D = 1.30 f 0.04 (14) 

a value which may be compared to D = 1.32 * 0.04 obtained for Brownian chain-chain 
aggregation (Debierre and  Turban 1987a) and to D = 1.29i0 .01  for particle-chain 
aggregation (Bradley and  Kung 1986, Debierre and Turban 1986). The fractal 
dimension of the self-avoiding walk DsAW = is close to these values although it falls 
outside the confidence interval in the case of particle-chain aggregation. 

Let us now consider the chain-size distribution function itself. At different times 
ti  or  different sizes si, equations (3a)  and  (3b) with 0 = 2 lead to 

In n ( s ,  t , )  = -2  In s+Inf (s / t : )  

In n ( s , ,  t )  = -2z In t + l n  g ( s , / t ’ ) .  

(15a)  

(15b) 

According to equations (4) and ( 5 ) ,  f ( x )  always has a maximum fmax for some 
intermediate value x = xf since T < 2, whereas g ( x )  has a maximum g,,, for x = xg 
only when T < O .  Then one may write 

It follows that the curves In n ( s ,  t , )  against In s have a common tangent with slope -2, 
each curve being in contact with the envelope when In s = ln(xft:). The same is true 
for In n ( s , ,  t )  against In t when T < O .  The slope of the envelope is then -22 and the 
contacts occur when In t = ln[(s,/x,)’”]. This is just the behaviour displayed in figure 
5 where the slopes of the envelopes are very near to the expected values. It follows 
that T < 0. 

An anomalous behaviour is observed for s = 1 (figure 5 (a ) ) .  This may be traced 
to the fact that with our Monte Carlo algorithm the diffusivity and  the sticking 
probability are lower for monomers than for dimers. 
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Figure 5. ( a )  In N ( s ,  t )  plotted against In s at times f = 2, 5, 12, 28, 69, 169, 414, 1010, 
2465, 6018, 56052. The slope of the envelope is -1.92 (to be compared to -2) and it 
intersects the vertical axis at a value close to Inf,,, as expected. (b )  In N ( s ,  I )  plotted 
against In I for s = 2, 3,  4, 6, 8, 12, 16, 20. The envelope has a slope equal to -0.83 
(-22 = -0.86). 

The exponents T and w may be estimated from the behaviour of a single curve for 
small s / t '  values. One expects from equations (3)-(5) that for long times the curve 
In n(s ,  t )  against In s has a slope - T  on the small s side. In the same way, the curve 
In n(s ,  t )  against In t on the large t side has a slope -w .  The anomalous behaviour 
for small s values makes this direct determination of T and w difficult (figure 5), but 
it is possible to estimate these exponents from the scaling functions f ( x )  and g ( x )  
shown in figure 6 where we have plotted ln(s2N(s, t ) )  against In x and In( tZzN(s ,  t ) )  
against In x for different sizes and times. Following equation (3), T has been estimated 
from the size dependence of f ( x )  - x2-' and w from the time dependence of g ( x )  - 

at small x, and we obtain 

7 = -2.9 f 0.7 

w = 2.1 f 0.3 

x w / z - 2  

(17)  

(18) 

in agreement with the scaling law (equation (6)) .  
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Figure 6. Log-log plots at times between f = 6018 and f = 56 052. ( a )  The scaling function 
f ( x )  against x. For x<< 1, the slope of the straight line is roughly equal to 4.9 so that 
7 = -2.9 * 0.7. This function exhibits a maximum f,,, as predicted by the scaling analysis. 
( b )  g(x) against x (since 7<0, g has a maximum). For small x values, one obtains 
w = 2.1 * 0.3. 

A dynamic scaling theory has been developed for cluster-cluster aggregation when 
the clusters are in Brownian motion with a size-dependent diffusion coefficient propor- 
tional to s y  (Kolb 1984, Botet and Jullien 1984). The exponent z is given by 

z = [ 1 - - ( d  - 2)/0]- ' .  (19) 

We have recently studied a two-dimensional chain-chain aggregation model in which 
rigid chains perform a random walk on the lattice, with a size-dependent diffusion 
coefficient (Debierre and Turban 1987b). Assuming that during the time interval 
At - R2s-" where two chains remain close to each other, they stick with a probability 
pF - s - ~ ,  equation (19) becomes 

(20) 

Our results with y in the range -2 < y < 0.5 are in good agreement with equation (20) 
and we obtain cp = 0.36. Since the centre of mass of a free-reptating chain is in Brownian 

z = [l  - y +  cp - ( d  -2) /0]- ' .  
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motion for long times (Caracciolo and Sokal 1986) with a diffusion coefficient varying 
as a power of the chain size s, if the sticking exponent cp is assumed to be the same 
as for rigid chains, then the value z=O.43 obtained for the free-reptation model 
corresponds to a s-' variation of the chain diffusion coefficient. This is the behaviour 
conjectured in the free-draining limit (de Gennes 1972, Caracciolo and Sokal 1986) 
and observed in recent simulations (Naghizadeh and Kovac 1986). 
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